skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pálvölgyi, Dömötör"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Abstract We introduce partitioned matching games as a suitable model for international kidney exchange programmes, where in each round the total number of available kidney transplants needs to be distributed amongst the participating countries in a “fair” way. A partitioned matching game (N, v) is defined on a graph$$G=(V,E)$$ G = ( V , E ) with an edge weightingwand a partition$$V=V_1 \cup \dots \cup V_n$$ V = V 1 V n . The player set is$$N = \{ 1, \dots , n\}$$ N = { 1 , , n } , and player$$p \in N$$ p N owns the vertices in$$V_p$$ V p . The valuev(S) of a coalition $$S \subseteq N$$ S N is the maximum weight of a matching in the subgraph ofGinduced by the vertices owned by the players in S. If$$|V_p|=1$$ | V p | = 1 for all$$p\in N$$ p N , then we obtain the classical matching game. Let$$c=\max \{|V_p| \; |\; 1\le p\le n\}$$ c = max { | V p | | 1 p n } be the width of (N, v). We prove that checking core non-emptiness is polynomial-time solvable if$$c\le 2$$ c 2 but co--hard if$$c\le 3$$ c 3 . We do this via pinpointing a relationship with the known class ofb-matching games and completing the complexity classification on testing core non-emptiness forb-matching games. With respect to our application, we prove a number of complexity results on choosing, out of possibly many optimal solutions, one that leads to a kidney transplant distribution that is as close as possible to some prescribed fair distribution. 
    more » « less
    Free, publicly-accessible full text available February 11, 2026
  3. Free, publicly-accessible full text available January 1, 2026